
1

Transparent web platform
decoupling with Multiplying
Architecture

Eder Ignatowicz

@ederign

Guilherme Caponetto

@caponetto

KIE Tools

2

3

4

5

6

7

8

How to adapt a 10 years old legacy
to modern web development?

9

From a handful of engineers to
6 different fullstack teams working
independently on different fronts
on this new initiative?

10

How to breakup my frontend
monolith into many smaller
manageable pieces?

11

Micro frontends

12

The Multiplying Architecture

"An architectural style where
independently deliverable frontend
applications are composed into a
greater whole"

13

Cam Jackson
https://martinfowler.com/articles/micro-frontends.html

B
enefits

Incremental upgrades
Simple, decoupled codebases
Each micro frontend can run as standalone
Independent deployment and releases
Autonomous Teams

14

Exam
ple

15

16

Monolith Web Application

Datastore

Backend

Frontend

Web Application based on
Microservices Architecture

API

Frontend

Microservice A Microservice A Microservice C

Datastore Datastore Datastore

Web Application based on
Microservices and Micro-front

end Architecture

API

Microservice A Microservice A Microservice C

Datastore Datastore Datastore

Micro-front end A Micro-front end B Micro-front end C

17

Container/
App Shell

Micro
frontend B

Micro
frontend C

Micro
frontend B

Decides when/where to show
each Micro frontend

BFF A BFF B BFF C

No Micro frontend
communicate

 directly to each other

Kafka, Datastore etc...

18

aka client-side integration:

After the container gets loaded in the browser, it

gets access to micro front end source code

Pros: A can be deployed independently at any time

and can deploy different versions of it, and Container

can decide which one to use

Cons: tooling + setup is far more complicated

Independent deployment makes it challenging to

test/verify (build a good test suite for it)

Run-Time integration

Types of Integration
Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as
https://mydomain.com/c.js

User navigates to
https://mydomain.com

Container app is loaded

Container apps fetches new
C from

https://mydomain.com/c.js

19

aka compile-time integration:

Before the container gets loaded in the

browser, it gets access to micro frontend

source code;

Foreign modules are accessible during build

Pros: Easy to setup and understand

Cons: Container has to be re-deployed every

time child has updated and tempting to

tightly coupled Container + child together;

Build-time integration

Types of Integration
Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as NPM package

NPM Registry
[C]

Team B decides to upgrade C
so install a new dependency

Team B builds a new
Container with new C

Team B deploys a new
Container with new C

B
uild-tim

e integration

20

21

Autonomous teams

- Each team can run it's micro frontend in isolation

Pros

- Smaller/quickier build;

- Focus just on the problem;

- Less distraction, noise

Cons

- Bugs can appear just on container app

- Hard to run the complete experience;

- Hard to debug problems across entire system;

- Incoherent experiences;

- Our project:

- Tricky issues can appears only on production

Biggest Benefit - Autonomous Teams

Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as NPM package

NPM Registry
[C]

Team B decides to upgrade C
so install a new dependency

Team B builds a new
Container with new C

Team B deploys a new
Container with new C

22

What you should do:

- Custom CSS from your project:

- Use CSS-in-JS library

- Use frameworks built-in component style

scoping

- Vue's and Angular has good ones

- "Namespace" all your CSS

- CSS coming from other libraries

- Use a component library that does css-in-js

- Manually build the css library and apply

namespacing techniques to it

- Scope-it

- Shadow DOM or iframes!

Another concerns - Styling
Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as NPM package

NPM Registry
[C]

Team B decides to upgrade C
so install a new dependency

Team B builds a new
Container with new C

Team B deploys a new
Container with new C

23

- Nothing new, exciting, even a bit of 'yuck"

- Pros

- Great degree of isolation;

- Styling

- Global variables

- Shadow DOM was not a option in 2019

- Some libraries play directly with body of the page

- We only use it when necessary

- Cons:

- Makes your app feel 'old'

- Less flexible than other options

- Hard to integrate routing, history;

- Challenging to make the app responsive

- Not Content-Security-Policy friendly

- Harder to make apps communicate

Context Isolation via iframes

24
Example extracted from https://martinfowler.com/articles/micro-frontends.html

25

26

27

Context Isolation via iframes

28

https://twitter.com/housecor/status/1139504822930092033/photo/1

Micro frontend Spectrum

Total independence Strategic collaboration

Each team chooses tech stack

Each micro frontend makes it's own API calls

App is composed of fully functional micro

apps

Each micro frontend has it's own CI/CD

Agrees on tech stack

Container handles all API calls

Share 'dumb' components

Shared CI/CD

Going deeper on
Multiplying Architecture

29

30

Can I hae editors
the? :)

Can I have my editor here?

31

Can I also have the
editors here? :)

32

Also here

33

Can I have the
editors there? :)

And here :)

Introducing
Multiplying Architecture

34

View is a portable set of

widgets that are exposed as

an unit to the Channel

through the Envelope.

The Abstractions

35

Top level abstraction that

represents the hosting

environment, like a website

or a desktop application.

Channel

Editor is a specialized type

of View, that gets a file

content as input and is able

to serve the content state

back to the Channel

through the Envelope.

EditorView

Enable transparent

communication between

Components (View/Editor)

and Channel

Envelope

Core Components

Online channel

Envelope instance

Editor

Online channel

Envelope instance

Editor

an envelope that combines two envelopes

Serverless Workflow Combined Editor Envelope

Serverless Workflow Combined Editor View

Serverless Workflow Text Editor Envelope Serverless Workflow Diagram Editor Envelope

Serverless Workflow Text Editor View Serverless Workflow Diagram Editor View

VS Code channel

Envelope instance

Editor

VS Code channel

Envelope instance

Editor

Browser extension channel

Envelope instance

Editor

API Examples

42

More editors

43

Dashbuilder editor

start.kubesmarts.org

BPMN editor

bpmn.new

DMN editor

dmn.new

PMML editor

pmml.new

Kaoto editor

kaoto.io

Serverless Workflow Tools

49

50

More on:

github.com/kiegroup/kie-tools

start.kubesmarts.org

sandbox.kie.org

Some authoring highlights

51

Users are able to upload,

create and manage their

files inside the browser.

This is an implementation

for file system in the

browser specific for the

online channel.

52

Authoring Highlights

In-browser multi-file support

http://www.youtube.com/watch?v=PRyjp8VTfCo

Users can benefit from

autocomplete for values,

structures and even

entire code snippets

when using text editors.

Channels can use the

same language service

package to provide this

feature.

53

Authoring Highlights

Autocomplete

http://www.youtube.com/watch?v=fjxzY4ojpYg

Users can be aided by

real-time validation of

their edits.

Each channel

implements their own

way of showing this

information.

54

Authoring Highlights

Validation

http://www.youtube.com/watch?v=ZvbIOPZhDhA

Users can easily import

their GitHub repositories

and start working on the

files.

As code can be

pushed/pulled to/from

the repository, it enables

the online channel as

another medium for

collaboration.

55

Authoring Highlights

GitHub integration

http://www.youtube.com/watch?v=WtPEpgmoVBA

Users can easily shift to

either VS Code or VS

Code web from the

online channel.

56

Authoring Highlights

VS Code integration

http://www.youtube.com/watch?v=aOaRpWyQSYM

Users can try out various

samples when starting to

explore the editors.

Since the samples live in

their own repository,

users can also share their

own samples and make

them available to

everyone.

57

Authoring Highlights

Samples

http://www.youtube.com/watch?v=BrBh-Z0sDfk

Users can deploy their

models to their

OpenShift instance and

share them with others.

58

Authoring Highlights

Deploy to OpenShift

http://www.youtube.com/watch?v=ZAdZWpzVRPk

Users can connect to

backend services running

either locally or remotely

to augment their

authoring experience.

59

Authoring Highlights

Backend services

http://www.youtube.com/watch?v=0GeGnWqKpmU

Users can connect to

their OpenShift instance

and easily try out their

changes in a Quarkus

environment loaded up

in dev mode.

60

Authoring Highlights

Dev Mode

http://www.youtube.com/watch?v=PB6ZMvSNSmA

Users can benefit from

inter-envelope

communication to have a

richer set of features.

61

Authoring Highlights

Envelope communication

http://www.youtube.com/watch?v=0iA8X0HulUA

Good frontend development is
hard.

62

Your favourite web framework will
not be here forever

63

64

https://twitter.com/housecor/status/1139504822930092033/photo/1

Micro frontend Spectrum

Total independence Strategic collaboration

Each team chooses tech stack

Each micro frontend makes it's own API calls

App is composed of fully functional micro

apps

Each micro frontend has it's own CI/CD

Agrees on tech stack

Container handles all API calls

Share 'dumb' components

Shared CI/CD

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

65

Thank you

Eder Ignatowicz

@ederign

Guilherme Caponetto

@caponetto

