- Published on
Blog Series: Learning Agentic AI End-to-End
- Authors

- Name
- Eder Ignatowicz
- @ederign
Two of my main goals for this year are to learn Agentic AI end-to-end and to embrace AI assistance in my daily life—both in coding and in studying. With that in mind, I decided to start this blog series based on the book "Agentic Design Patterns" by Antonio Gullí, using Claude as my research companion throughout the process.
Repository: github.com/ederign/Agentic-AI-end-to-end Note: These findings emerged from collaborative exploration with Claude (Anthropic), including hands-on implementation and documentation research.
What Are Agentic Design Patterns?
Agentic design patterns are reusable architectural approaches for building AI applications that go beyond simple prompt-response interactions. These patterns enable:
- Multi-step reasoning - Breaking complex tasks into manageable steps
- Tool usage - Integrating external capabilities (search, APIs, databases)
- Self-correction - Evaluating and improving outputs
- Autonomous workflows - Coordinating multiple AI components
The Three Approaches
This documentation series explores agentic AI design patterns and compares their implementation across three approaches:
- OpenAI APIs - OpenAI-compatible APIs (Responses/Completions) with LlamaStack as infrastructure
- LangChain - LangChain for orchestration with LlamaStack as infrastructure
- ADK - Google's Agent Development Kit with LiteLLM as infrastructure
Architecture Overview
┌─────────────────────────────────────────────────────────────┐
│ Application Code │
└─────────────────────────┬───────────────────────────────────┘
│
┌─────────────────────────▼───────────────────────────────────┐
│ Orchestration Layer (choose one) │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ LangChain │ │ ADK │ │ Manual Code │ │
│ │ │ │ │ │(OpenAI APIs) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└─────────────────────────┬───────────────────────────────────┘
│ OpenAI-compatible API
┌─────────────────────────▼───────────────────────────────────┐
│ Infrastructure Layer │
│ │
│ ┌────────────────────────┐ ┌────────────────────────┐ │
│ │ LlamaStack │ │ LiteLLM │ │
│ │ (OpenAI APIs + │ │ (ADK) │ │
│ │ LangChain) │ │ │ │
│ └────────────────────────┘ └────────────────────────┘ │
└─────────────────────────┬───────────────────────────────────┘
│
┌─────────────────────────▼───────────────────────────────────┐
│ Model Providers │
│ │
│ OpenAI │ vLLM │ Ollama │ TGI │ Anthropic │ ... │
└─────────────────────────────────────────────────────────────┘
Approach Comparison
| Approach | Orchestration | Infrastructure | Best For |
|---|---|---|---|
| OpenAI APIs | Manual | LlamaStack | Learning fundamentals, full control |
| LangChain | LangChain/LCEL | LlamaStack | Complex workflows, rich abstractions |
| ADK | Google ADK | LiteLLM | Structured agents, multi-agent systems |
LlamaStack provides model freedom and data sovereignty. LangChain on top of LlamaStack gives you both rich orchestration and infrastructure flexibility. ADK offers a structured, agent-first approach with LiteLLM providing similar model flexibility.
Pattern Index
| # | Pattern | Description | Status |
|---|---|---|---|
| 1 | Prompt Chaining | Sequential prompt execution with output passing | Done |
| 2 | Routing | Coming soon | Planned |
| 3 | Parallelization | Coming soon | Planned |
| 4 | Reflection | Coming soon | Planned |
| 5 | TBD | Coming soon | Planned |
Repository Structure
packages/
├── common/ # Shared utilities
└── patterns/ # All pattern implementations
└── prompt_chaining/
├── raw.py # OpenAI APIs (Responses/Completions)
├── langchain.py # LangChain + LlamaStack
├── adk.py # ADK + LiteLLM
└── run.py # Unified CLI
Running Patterns
# Start LlamaStack (required for OpenAI APIs and LangChain approaches)
make llama-server
# Run prompt chaining with different approaches
make prompt-chaining-raw # OpenAI APIs
make prompt-chaining-langchain # LangChain + LlamaStack
make prompt-chaining-adk # ADK
make prompt-chaining-all # Compare all three
References
- Agentic Design Patterns by Antonio Gullí - The book that serves as the basis for this project
- Anthropic - Building Effective Agents
- LlamaStack GitHub
- LangChain Documentation
- Google ADK Documentation